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My Current Research Directions

Low−power protocols
(typically delay−tolerant)

Broadband QoS support 

and multiple traffic classes)
(typically delay−constrained, 

Resource−efficienct
communication protocols

Cross−layer
interaction and

optimization studies

> Energy harvesting network protocols

> UWN MAC and routing protocols
> Sustainable network communications

> Smart grid network protocols 

> Network RF energy hervesting

> QoS/QoE aware DSA and WSA
> Mesh routing in CDNs

> Channel−aware unicast video streaming 
> Broadcast QoE support over HetNets

> Efficient M2M communications

Physical channel and transceiver

Medium access control

Node−to−node link control

Network routing. forwarding

End−to−end transport

Source/ Applications
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Background and Motivation

Explosive growth in high throughput applications. Global Internet traffic
estimated to increase more than five times between 2018 and 20241

This leads to proportionate increase in energy consumption of wireless networks

Hence “energy-efficient green communication” is gaining popularity in industry
as well as academics2

1“The power of 5G,” Ericsson Mobility Report, Nov., 2018.
2Available: http://www.chaire-ueb.cominlabs.ueb.eu/ .Energy Harvesting and RF Energy Transfer aided
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Background and Motivation (contd.)
IoT devices are expected to increase at a compound annual growth rate
of 7% by 20223 ⇒ energy sustainability is of keen interest

Limited battery capacity of IoT devices is a major bottleneck

Mechanisms to ensure the perpetual operation of growing number of
devices is of very high importance

3Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016-2021. Cisco White Paper, 2017.Energy Harvesting and RF Energy Transfer aided
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Network Performance Measures

Problems encountered in computer communication networks
I Congestion/delay
I Blocked calls and dropped calls
I Poor QoS/QoE
I Concerns of resource efficiency

These affect customer satisfaction and market revenue

Need for network planning: e.g., routing, switching, multiplexing

Need for resource management: e.g., frequency reuse, energy usage

Performance evaluation: Modeling and analysis

I Freedom of adjusting parameters during network planning and execution

I Helps in finding the performance bottlenecks
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Performance Evaluation Techniques

Three main evaluation techniques

Measurement
System simulation
Mathematical or analytical modeling

Comparison of three techniques
Technique Requirements Merits Demerits

Measurement Instrumentation and
experimental hardware Most accurate

1. Expensive and time
consuming

2. Non-repetitive measurements
3. Not compatible with future

designs

Simulation 1. Simulator
2. Programming skills

1. High control over parameters
and workload

2. Compatible with future system
designs with some extra effort

1. Less accuracy
2. Large effort

Analysis 1. Systems level understanding
2. Mathematical skills

1. Least effort
2. High control over parameters

and workload
3. Smooth compatibility to

future system designs

1. Least accurate
2. Unrealistic assumptions
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Stochastic Process

Definition: A stochastic process S is a family of random variables X(t), each
defined on some sample space Ω and function of time t defined on parameter
space T .

In simple terms, a set of random variables which are function of time

T , normally considered as time can be either discrete or continuous:
Discrete or continuous time process

I every month: discrete
I real time: continuous

Ω denoting set of values X(t) can take, can be discrete or continuous:
Discrete or continuous state process

I number of active tasks: discrete
I time delay in communication network: continuous
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Classification
Relationship among some interesting stochastic processes4

SMP: Semi-Markov Process;
MP: Markov Process;
BD: Birth-Death Process;
RW: Random Walk;
RP: Random Process

i,j: States;
pij: Transition probability from state i to j;
fτ : Distribution of time between transitions;
q: Random Walk;
λ: Birth/arrival rate
µ: Death/service rate

4L. Kleinrock, Queueing Systems, volume I: Theory. Wiley Interscience, 1975.Energy Harvesting and RF Energy Transfer aided
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Limitation of Classical Stochastic Analysis

Shortcomings of Stochastic Analysis:
Stationarity of the process is assumed, which may not be true to real
world applications

Mathematical model thus obtained is only an approximate representation
of the process

Data-driven Optimization Studies:
Adaptive to the dynamics of real world systems

Robust, but can be computationally intensive
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Motivations to Cross-Layer Protocol Optimization Studies
Basic network layer concepts

Network layering motivation
I Pros and cons of layer-based approach

Miniaturization and personalization of mobile wireless devices
Green communication systems

I Need for network planning: e.g., routing, switching, multiplexing
I Need for resource management: e.g., frequency reuse, energy usage

Cross-layered study objectives and concepts
I Pros and cons of cross-layered approach

Need for system-level performance modeling and analysis
Energy Harvesting and RF Energy Transfer aided
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Cross-Layer Interactions and Examples
Functionalities of a protocol layer are influenced by the other layers
Accounting such dependencies make the protocol design more
responsive to the system’s needs as a whole

Cross-layering examples
Physical layer aware media access control, e.g., in UWSN
Physical layer aware link layer error control, e.g., stop-and-wait protocol
Physical channel and device limitations aware source coding adaptation
Energy efficiency and energy harvesting toward green communications
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Link-level Objectives and Current Practices
Node-level error and flow control

I Error-prone wireless channel: use error control schemes (AMC, ARQ,
FEC)

I Time-varying channel: ARQ vs. FEC (error bursts, return channel, delay)
I Limited energy of of portable devices: energy efficiency of interest

Classical ARQ schemes: SW, GBN, SR

PHY solutions: MCS (e.g., n-QAM, Hamming codes, RS codes)

Hybrid ARQ: FEC+limited ARQ
“Channel-aware” link-layer transmission solutions

I Probing-based [Zorzi and Rao (IEEE Trans. Comp. ’97)]
I Probabilistic automata [Sampath et al. (Intl. J. WCMC, 2007)]

Window flow control (Transport layer)

Seek and utilize the channel information to adapt suitably

I Need to appropriately filter out the required channel information
Energy Harvesting and RF Energy Transfer aided
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Markov Modeling of Wireless Channel
Packet error follow a first-order Markov model with transition matrix:5

M(i) =
[
p11(i) p12(i)
p21(i) p22(i)

]
and M(1) =

[
p11 p12
p21 p22

]
p11 = 1− p12 (p21 = 1− p22) probability of successful (unsuccessful) transmissions

Marginal probability of packet error ε = 1− p21
1−p11+p21

Average probability of block error ε = P [1] = E [Pw(v)] =
∫ ∞

0
Pw(a)fv(a)da

where fv(a) is pdf of fading envelope
Probability that two successive blocks are in error is:

P [1, 1] = E [Pw(v1)Pw(v2)] =
∫ ∞

0

∫ ∞
0

Pw(a1)Pw(a2)fv1v2 (a1, a2)da1da2

and p21 = 1− P [1|1] = 1− P [1, 1]
P [1] = 1− P [1, 1]

ε
For 2nd order SC diversity, conditional probability of unsuccessful reception:

Pw(x) = 1− P [A(x)] with x = max
{
v(1), v(2)}

where Fv(a) = P
[
v(1) ≤ a

]
= P

[
v(2) ≤ a

]
5M. Zorzi, R. R. Rao, and L. B. Milstein, “ARQ error control for fading mobile radio channels”, IEEE Trans. Veh. Technol., vol. 46, no. 2,

pp. 445–455, 1997.Energy Harvesting and RF Energy Transfer aided
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Markov Modeling of Wireless Channel – II
Fx(a) = [Fv(a)]2 and ε = E [Pw(x)] =

∫ ∞
0

Pw(a)2Fv(a)fv(a)da

Fx1x2 (a1, a2) = [Fv1v2 (a1, a2)]2 and

P(d) [1, 1] = E [Pw(x1)Pw(x2)] =
∫ ∞

0

∫ ∞
0

Pw(a1)Pw(a2)fx1x2 (a1, a2) da1da2

If Pw(v) =
{

0, v2 > P0

1, v2 ≤ P0,
, then

ε = Fv(
√
P0), P [1, 1] = Fv1v2

(√
P0,
√
P0

)
and ε(d) = ε2

P(d) [1, 1] = Fv1v2

(√
P0,
√
P0

)
and ε(d) = ε2

P(d) [1, 1] =
[
Fv1v2

(√
P0,
√
P0

)]2
, ε(d) =

(
P(d) [1, 1]

)2
, p21(d) = 1−(1− p21)2

For Rayleigh fading, the pdf of envelope is: fv(a) = 2ae−a2

Joint pdf is fv1v2(a1, a2) = a1a2
1−ρ2 e

−
a(a2

1+a2
2)

2(1−ρ2) I0

(
ρa1a2
1−ρ2

)
with ρ = J0(2πfDT )

ε = 1− e−P0 , p21 = Q(θ,pθ),Q(pθ,θ)
eP0−1 , where θ =

√
2P0

1−ρ2 .
Energy Harvesting and RF Energy Transfer aided
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Stop-and-Wait ARQ Protocols6

p p

p

p
2211

12

21

21

’bad’’good’

Performance measures:
I Data throughputR: Successful frames/s:
R ∆= limt→∞

E{number of data frames successful in time t}
t

I Energy efficiency E : Energy consumption per
successful data frame, including tx and rx energy per
data frame ed and per ACK/NAK frame ea, per slot
idling energy ew and total energy ep per probing frame.

p11(m) = [p21+(1−p21−p12)mp12]
p21+p12

, p21(m) = p21[1−(1−p21−p12)m]
p21+p12

SW cycle
Duration from an unsuccessful frame to the end of its successful transmission.

E{K} =
∑∞
κ=1 κ · Pr[K = κ] = p12(m)+p21(m)

p21(m)

Throughput of basic SW:RSW = 1
E{K}·m·s

Energy consumed per successful data frame in basic SW:
ESW = E{K} [ed + ea + (m− 1)ew]

6S. De, A. Sharma, R. Jantti, and D. H. Cavdar, “Channel adaptive stop-and-wait automatic repeat request protocols for short-range
wireless links”, IET Commun., vol. 6, no. 14, pp. 2124–2137, 2012.Energy Harvesting and RF Energy Transfer aided
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Channel Oblivious Probing (COP) Scheme based SW

Once a NAK is received, transmitter enters probing mode, with a
periodicity independent of fading margin

Probing frames are continued until a probing ACK is received

Average number E{P} in a set of contiguous probing is:
E{P} = 1

p21(tp)

COP cycle
Length of a cycle in COP based SW is defined as the duration between two
probing phases, which gives a single probing ACK.

E{K} = 1+p12(m)
p12(m)

Data throughput in COP based SW:
RCOP = E{K}−1

(E{K}−1)ms+s+Tp+E{P}tps+2Tp
Average energy consumed per successful data frame is approximately:
ECOP = E{K}(ed+ea)+(E{K}−1)(m−1)ew+E{P}(ep+tpew)

E{K}−1
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Channel Aware Probing and Channel Aware SW

C

1

t2

BA

Threshold level
D

t

Average waiting in CAP3: E{wp} = E{W(1)}+ E{W(2)}p22(w1)
p21(w2)

E{W(x)} =
∑L−1
i=0 W

(x)
i pi|nak x = 1, 2; E{P} = p21(w2)+p22(w1)

p21(w2)

RCAP3 = E{K}−1[(
E{K}−1

)
ms+s+Tp

]
+
⌈
E{wp}

s

⌉
s+2Tp

ECAP3 =
E{K}(ed+ea)+

(
E{K}−1

)
(m−1)ew+E{P}ep+

⌈
E{wp}

s

⌉
ew

E{K}−1

CASW cycle
A CASW cycle is the duration between the ends of two consecutive lost data frames.

RCASW = E{J}
(E{J}ms+s+Tp)+πs ; E{J} = p21(π)

p12(m)

ECASW = 1
E{J} [(E{J}+ 1)(ed + ea) + E{J}(m− 1)ew + πew]

Energy Harvesting and RF Energy Transfer aided
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Effect of Mobility and Energy Saving-Throughput Tradeoff

Effect of mobility
on Throughput
and Energy
consumption
performance

Performance
improvement
provided by
proposed schemes
over basic SW
protocol
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ARQ-based switched antenna diversity in Markov channels7

TRA =
(
p1 p3
p4 p2

)
, TRB =

(
q1 q3
q4 q2

)
PERA = 1−p1

2−p1−p2
and PERB = 1−q1

2−q1−q2

P =
p1q1 p1q3 p3q1 p3q3 0 0 0 0
p1q4 p1q2 p3q4 p3q2 0 0 0 0

0 0 0 0 p4q1 p2q1 p4q3 p2q3
0 0 0 0 p4q4 p2q4 p4q2 p2q2
0 0 0 0 p1q1 p3q1 p1q3 p3q3
0 0 0 0 p4q1 p2q1 p4q3 p2q3

p1q4 p1q2 p3q4 p3q2 0 0 0 0
p4q4 p4q2 p2q4 p2q2 0 0 0 0


Throughput of the SSC-ARQ combined scheme:
ηSSC−ARQ = π1 + π2 + π5 + π6
For symmetrical channels (p1 = q1, p2 = q2),
ηSSC−ARQ−sym =
(1−p2)2+(1−p1)(1−p2)(p1+p2)

(2−p1−p2)2

Throughput of ARQ system with only one receive
antenna: ηARQ = (1− PER) = 1−p2

2−p1−p2
Throughput gain: Gain = ηSSC−ARQ − ηARQ

1
A B* 0g g

2
A B0*g b

5
A B0 *g g

6
0A B*gb
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A B0*

gb

4
A B0*

b b
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8
A B0 *

b b
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7S. Chakraborty, R. Roy, and S. De, “ARQ-based switched antenna diversity in markov channels”, IET Electron. Lett., vol. 44, no. 25,
pp. 1475–1476, 2008.Energy Harvesting and RF Energy Transfer aided
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Exploiting Short-term Channel State

Link layer communication between a node pair in mobile environment

System considered is slotted, slot duration= Tp seconds
Assumptions:

I Frames always present at Tx
I Channel invariant in a frame duration Υf ; may vary from frame to frame8

Depending on received signal quality, Rx sends ACK/NAK

In case of NAK, Rx also sends the useful information, such as signal
strength information (SSI) and Doppler frequency fD9

8Q. Liu, S. Zhou, and G. Giannakis, “Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links”,
IEEE Trans. Wireless Commun., vol. 3, no. 5, pp. 1746–1755, 2004.

9C. Tepedelenlioglu, A. Abdi, G. B. Giannakis, and M. Kaveh, “Cross-layer combining of adaptive modulation and coding with truncated
ARQ over wireless links”, Wireless Commun. Mobile Comput., vol. 1, no. 2, pp. 221–242, 2001.Energy Harvesting and RF Energy Transfer aided
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Time Derivative of Fading Envelope

For transmission power P at Tx and h being instantaneous channel gain,
signal strength indicator (SSI) at Rx is X =

√
P |h|

Since X is just |h| multiplied by constant
√
P , X provides the same

information as h

We use Ẋ ∆= dX
dt in our proposed channel-aware protocols

fẊ(ẋ) is always N (0, σ) irrespective of channel fading distribution10.
Only σ changes depending on fading distribution

Approach using Ẋ is general, independent of fading distributions

10S. Cotton, “Second-Order Statistics of κ-µ Shadowed Fading Channels,” IEEE Trans. Veh. Technol., vol. 65, no. 10, pp.8715-8720,2016.Energy Harvesting and RF Energy Transfer aided
Sustainable IoT Networks Swades De (IIT Delhi) 22/75



Probability of SSI Staying Below A Threshold

Let SSI from Rx at time t is X = Xo(< Xth)
From Xo, estimate Ng (number of slots that X will continue to remain
below Xth)

Probability that X will not reach Xth in the next time slot:

Pr {X(t+ Tp) < Xth} = Pr
{
X(t) + Ẋ · Tp < Xth

}
= Pr {X0 +X1 < Xth} (1)

X1 = Ẋ · Tp is a RV denoting temporal variation of X in one slot, where
Ẋ is a Gaussian RV

Energy Harvesting and RF Energy Transfer aided
Sustainable IoT Networks Swades De (IIT Delhi) 23/75



SSI Staying Below A Threshold in Next 1 Slot

As Xo +X1 is SSI, X(t+ Tp) ∈ [0,∞), i.e., X1 ∈ [−X0,∞)
X1 is a truncated Gaussian RV:

fX1(x1) =


1

√
2πσ1

[
1−Φ1

(
−X0
σ1

)]e− x2
1

2σ2
1 x1 ≥ −X0

0 elsewhere

(2)

Φ(p) =
p∫

−∞

1√
2π
e−

t2
2 dt

Hence we obtain (1) as Pr {X0 +X1 < Xth} =
Xth−X0∫
−∞

fX1(α)dα
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Probability of SSI Staying < A Threshold in Next Ng Slots
Similarly, probability that X will not reach Xth in next Ng slots:

Pr
{
Xo +X1 < Xth, . . . , Xo +XNg < Xth

}
=

Xth−Xo∫
−∞

. . .

Xth−Xo∫
−∞

fX(x, Σ,−Xo)dx (3)

fX(x, Σ,−Xo) is a truncated Ng-variate Gaussian distribution 11

fX(x, Σ,−Xo) = e−
1
2 xTΣ−1x

∞∫
−Xo

e−
1
2 xTΣ−1xdx

; x ∈ RNg≥−Xo
(4)

X = [X1, . . . , XNg ]T , −Xo = −Xo[
Ng times︷ ︸︸ ︷
1, . . . , 1]T , Σ = E[XXT ],

RNg≥−Xo
=
{

x ∈ RNg : x ≥ −Xo

}
, and

∞∫
−Xo

is an Ng-dimensional integral

11W. C. Horrace, “Some results on the multivariate truncated normal distribution,” Journal of Multivariate Analysis, vol. 94, no. 1, pp.
209-221, 2005.Energy Harvesting and RF Energy Transfer aided

Sustainable IoT Networks Swades De (IIT Delhi) 25/75



Dynamic Stop-and-Wait Protocol (D-SW)12

Tx sends data frames every β slot (β ≥ 1) when X0 ≥ Xth and regularly
receives ACK for each data frame

Based on SSI obtained from a NAK when X0 < Xth, Tx waits for an
interval of Tbg(= N∗g · Tp) slots before next transmission

N∗g estimation is based on fD and SSI received over NAK

No periodicity associated with estimated N∗g
D-SW directly resumes data transmission after waiting for N∗g slots

fD always does not imply a mobile scenario. It also portrays scenarios with
static Tx-Rx but mobile scatterers in between them.

12P. Mukherjee, D. Mishra, and S. De “Exploiting Temporal Correlation in Wireless Channel for Energy-Efficient Communication,” IEEE
TGCN, Dec. 2017.Energy Harvesting and RF Energy Transfer aided

Sustainable IoT Networks Swades De (IIT Delhi) 26/75



Optimal Ng Estimation

For given acceptable error ε, maximum possible value of Ng is estimated

(P1) is solved to obtain Ng for given set of system parameters (fD and
Tp), Xo, Xth, and ε:

(P1) : maximize
Ng ≥ 0

Ng (5)

subject to Pr
{
Xo +X1 < Xth, . . . , Xo +XNg < Xth

}
≥ 1− ε

Pr
{
Xo +X1 < Xth, . . . , Xo +XNg < Xth

}
is calculated using (3)

Xi like X1 is also a zero mean truncated Gaussian RV with variance
σ2
i = iσ2

1

To solve (5), we define lower bound N lb
g and upper bound Nub

g for a
given set of system parameters

Energy Harvesting and RF Energy Transfer aided
Sustainable IoT Networks Swades De (IIT Delhi) 27/75



N lb
g Calculation

Assuming complete independence among all Xi, we get

Pr {Xo +X1 < Xth, . . . , Xo +XN < Xth} =
N∏
i=1

Pr {Xo +Xi < Xth}

(6)
Accordingly we obtain N lb

g as

(P2) : maximize
Ng ≥ 0

Ng (7)

subject to
Ng∏
i=1

Φ1
(
Xth−X0

σi

)
1− Φ1

(
−X0

σi

) ≥ 1− ε

Energy Harvesting and RF Energy Transfer aided
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Nub
g Calculation

Assuming that X crosses Xth in Ngth slot irrespective of whether it had
crossed Xth before or not, Nub

g is calculated by solving:

(P3) : maximize
Ng ≥ 0

Ng (8)

subject to
Φ1

(
Xth−X0
σNg

)
1− Φ1

(
−X0
σNg

) ≥ 1− ε

N lb
g and Nub

g allow us to reformulate (5) into an optimization problem
with an unimodal objective function

Energy Harvesting and RF Energy Transfer aided
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N ∗g Calculation

Given N lb
g and Nub

g , (5) is reformulated as
(P4) :

N∗g = argmin
N lb
g ≤Ng≤Nub

g

[
Pr
{
Xo +X1 < Xth, . . . , Xo +XNg < Xth

}
− (1− ε)

]2
(9)

Utilizing unimodal nature of objective function, we propose an algorithm
based on Golden Section based line search method13 to estimate N∗g

Theorem 1
N∗g reduces to average fade duration (AFD) with ε = 0.5

13A. D. Belegundu and T. R. Chandrupatla, Optimization Concepts and Applications in Engineering. Cambridge University Press, 2011.Energy Harvesting and RF Energy Transfer aided
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Effect of System Parameters on N ∗g
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For same X0, N∗g acquires large value for lower node velocity and
vice-versa; for Tp = 500 µsec, X0 = −100 dBm, N∗g = 68 slots when
v = 5 kmph compared to N∗g = 6 slots when v = 60 kmph

Lower bound N lb
g is relatively a tighter bound compared to Nub

g
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Data Throughput of D-SW
Duration of ACK/NAK is assumed too small compared to Υf , i.e.
ΥA/N = %Υf , where %� 1

Channel modeled as a two-state Markov process, M =
[
p11 p10
p01 p00

]
β-step transition probabilities:
p11(β) = [p01+(1−δ)βp10]

δ and p01(β) = p01[1−(1−δ)β ]
δ , where

δ = p01 + p10
If ζ consecutive data transmissions (a R.V) occur thereafter, ζ − 1 are
successful, i.e., E(ζ) = 1+p10(β)

p10(β)
Data throughput (DR): Average number of data frames delivered
successfully per second

DR = A

B + CNg
1−DNg

frames/s (10)

Here A = E [ζ]− 1, B = (E [ζ]− 1)βΥf + Υf + 3ΥA/N , C = δΥf
p01(1) ,

and D = 1− δ
Energy Harvesting and RF Energy Transfer aided
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Energy Consumption of D-SW

Energy consumption per data frame (EB): Energy consumption per
successfully delivered data frame
Let νf , νA/N , νi and νp denote transmit and receive energy per data
frame, transmit and receive energy per ACK/NAK frame, per slot idling
energy and per slot total energy consumption per probing frame
respectively. Then EB is

EB =
E + F

1−DNg (G+NgH)
A

Joule (11)

where E = E [ζ] (νf + νA/N ) + (E [ζ]− 1)(β − 1)νi, F = δ
p01(1) ,

G = νp, and H = νi

Energy efficiency is defined as η = DR
EB

η needs to higher for a good scheme i.e., a better scheme should provide
higher overall efficiency
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Optimal ε Estimation
Optimal ε estimation for maximizing energy efficiency

(P6) : maximize
ε

η (12)

subject to C1 : 0 ≤ ε ≤ εu, C2 : Ng ≥ 1, and

C4 : g(Xo, Xth, fD, Tp, ε) = Ng,

where function g(Xo, Xth, fD, Tp, ε) gives output N∗g for a given set of
Xo, Xth, fD, and Tp.

ε∗ = min {εopt, εu} ,where εopt =
{
εopt : g(Xo, Xth, fD, Tp, εopt) = N∗g

}
(13)
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Competitive Approaches
Prior related approaches: AP1, AP214, CT 15

1 AP1: proposes AFD τ(Xth) as the waiting interval Tbg
2 AP2: Tbg = 0.5× [τ(Xth)− τ(Xi)], where Xi = Xn + Xth

2L is the
quantized SSI lying in {Xn, Xn+1} if the entire {X | X < Xth} range
is sub-divided into L levels with quantization step size Xth

L

3 CT: takes coherence time16 Tc = 0.423
fD

as default Tbg irrespective of X0.

Average Fade duration is mathematically defined as

τ(Xth) = Pr{X<Xth}∫ ∞
0

ẋfX,Ẋ(Xth, ẋ)dẋ
, where fX,Ẋ(x, ẋ) is joint PDF of X and Ẋ

14S. De, A. Sharma, R. Jantti, and D. H. Cavdar, “Channel adaptive stop-and-wait automatic repeat request protocols for short-range
wireless links,” IET Commun., vol. 6, no. 14, pp. 2128-2137, Sep. 2012.

15H. Moon, “Channel-adaptive Random Access With Discontinuous Channel Measurements,” IEEE J. Sel. Areas Commun., vol. 34, no. 5,
pp. 1704-1712, May 2016.

16T. Rappaport, Wireless Communications: Principles and Practice. Prentice Hall PTR, 2001.Energy Harvesting and RF Energy Transfer aided
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Proposed Framework Verification
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X0 plays a key role in Tbg estimation

For a particular X0, Tbg decreases with increasing v; reason being
decrease in correlation

Unlike other approaches, average no. of NAK frames per cycle is close
to 1 for D-SW
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Energy Efficiency

Number of bits LNAK in NAK frame
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Energy Harvesting and RF Energy Transfer aided
Sustainable IoT Networks Swades De (IIT Delhi) 37/75



Performance Comparison
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(a) Data rate; (b) Energy consumption; (c)Energy efficiency

D-SW results in 9% more data throughput, 4% less energy consumption,
and 12% more energy-efficient over nearest competitive approach AP2
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Remarks

D-SW estimated the ‘waiting time’ when channel is not suitable for data
transmission, i.e., X < Xth

But D-SW fails to exploit channel when it is in ‘good’ state, i.e.,
X ≥ Xth

D-SW only estimates optimal waiting time when channel is unusable for
data transmission

Hence we extend our analysis to the condition when X ≥ Xth
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Channel-aware Dynamic Window protocol (cDIP)17

cDIP: a combination of channel-aware SW and SR

When channel is ‘bad’ (X < Xth), cDIP waits for time Tbg = N∗g · Tp
until channel becomes usable

When channel is ‘good’ (X ≥ Xth), as in SR, Tx continuously transmits
data frames for time Tgb = N∗b · Tp without waiting for an ACK/NAK

Unlike classical SR, only NAK packets are sent for incorrectly received
data packets, which are retransmitted by the Tx

17P. Mukherjee and S. De, “cDIP: Channel-aware dynamic window protocol for Energy-efficient IoT Communication ,” IEEE Internet
Things J., vol. 5, no. 6, pp. 4474-4485, Dec 2018.Energy Harvesting and RF Energy Transfer aided

Sustainable IoT Networks Swades De (IIT Delhi) 40/75



cDIP Algorithm

Current Channel State X0

Good (X0 ≥ XTH) Bad (X0 < XTH)

Tx estimates Tgb Tx estimates Tbg

(i) Tx communicates
estimated Tbg to Rx

(ii) Continous data transfer
for next Tgb slots

After Tgb slots, Rx sends Tx a
feedback packet containing CSI
and information of frames not

received correctly.

After Tbg slots, Tx
sends a probing signal

ACK received NAK received

Garbled feedback
received at Tx

at Tx at Tx

Random Tbg is selected

(i) Tx estimates Tgb based on CSI
(ii) Tx first retransmits the
erroneous frames followed by new
data frames in these Tgb slots.

X0 ≥ XTH X0 < XTH
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Tgb estimation
Tgb = N∗b · Tp, where N∗b is the estimated time interval that X ≥ Xth

when X0 ≥ Xth

N∗b is calculated by solving:

(P7) : maximize
Nb ≥ 0

Nb (14)
subject to

Pr {X0 +X1 ≥ Xth, · · · , X0 +XNb ≥ Xth} ≥ 1− ε

Here also X1, · · · , XNb are truncated Gaussian R.Vs as stated earlier
P7 is reformulated like P1 to obtain N∗b

TO SUMMARIZE:
P1 estimated time N∗g for which Tx can be put to sleep when the channel
is unusable.
P7 estimated time N∗b for which Tx can continuously transmit data
without waiting for any ACK/NAK when the channel is suitable for
communication
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Data throughput of cDIP

Data throughput: Long-term average of successfully delivered data
frames per second.

DT =
(1−ε)
ζ Nb

(Nb +Ng)Tp + 3Tfp
frames/sec (15)

I ζ : interval between two consecutive data frame transmission attempts
I Nb and Ng : long-term averages of N∗b and N∗g respectively, i.e.,

Nb = lim
N→∞

1
N

N∑
i=1

N∗b (i) and Ng = lim
N→∞

1
N

N∑
i=1

N∗g (i)

I 3Tfp : time period due to probing based three way handshake between Rx
and Tx
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Energy consumption of cDIP
Energy consumption: Long-term average energy consumption per
successfully delivered data frame.

EC =
N∗
b
ζ νf + 2νA/N + νp + (N∗b + αbg)νi

(1−ε)
ζ N∗b

Joules (16)

νf , νA/N , νp, and νi : transmit and receive energy per data frame,
transmit and receive energy per ACK/NAK frame, probing frame, and
per slot idling energy

Energy efficiency: η = DT
EC

frames/sec/Joule

User-defined range of ε: ε ∈ [εl, εu]
Optimization problem P8 formulated to obtain ε∗ (optimal ε):

(P8) : ε∗ =
{
ε

∣∣∣∣∣ argmax
εl≤ε≤εu

η

}
(17)
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Verification of Tgb estimation
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Verification of Tgb estimation via Monte Carlo simulation. XTH = −10.4576 dBm

X0 � XTH is not the same as X0 being just more than XTH

Rate of increase of Tgb with X0 increases with decreasing v
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Effect of Fading Margin

Fading Margin F (dB)
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Effect of fading margin F on performance of cDIP

Increasing F implies that channel is more likely to stay in ‘good’ state
most of the time

cDIP unlike AP1, AP2, or CT avoids regular feedbacks even when
channel is in ‘good’ state

This results in significant performance improvement
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Overhead Performance

Number of additional bits BTx
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Effect of overhead BTx on η of cDIP. ε = 0.05, and XTH = −3.9788 dBm

BTx in case of cDIP, just like LNAK of D-SW, initially leads to
energy-efficiency enhancement before saturating at some point

Lower node mobility requires higher Bsatuarate
Tx , which reaffirms our

observation made in the analysis-simulation plot
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Performance Comparison
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Performance comparison: (a) Data throughput; (b) Energy consumption; (c) Energy efficiency.

XTH = −3.9788 dBm

Approximately 40.18% higher throughput, 9% lower energy
consumption, and 41.92% higher energy efficiency with respect to AP2

Nominal extra overhead

Gain margin increases considerably compared to D-SW
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Summary on Cross-layer Adaptive Protocols

Presented the research case studies on cross-layer channel aware
link-layer protocols

Significant energy efficiency can be achieved through simple extension
of PHY-layer information exchange

Further significant improvement of energy efficiency is achievable
through more fundamental information exchange

The proposed techniques are general, i.e., they are agnostic to the
channel envelop distribution
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II: Data-driven Smart IoT Framework18

Smart

Meter

Data

Collector

LAN WAN

powerline communication,

point-to-point,

mesh, hybrid

telephony, broadband,

radio-frequency, fiber

Control

center

Applicationsmeter data management,

billing,

outage management

Smart meter: measure electricity consumption, transmit data to collector
Sampling Rate: From 1 sample/sec to 1 sample per several minutes
Data collector: retrieves the data, may or may not process the data
Control center: central data collection point, data processing

Motivation and Research Gap:
High resolution smart meter data essential for near real-time applications

Characterization of high resolution smart meter data difficult due to
spiky and fluctuating load patterns

18S. Tripathi and S. De, “An efficient data characterization and reduction scheme for smart metering infrastructure”, IEEE Trans. Ind.
Informat., vol. 14, no. 10, 2018.Energy Harvesting and RF Energy Transfer aided
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Characterization of Smart Meter data
Dataset used:

1 Reference Energy Disaggregation Dataset (REDD) published by
Massachusetts Institute of Technology (MIT) sampled at 1 sample/sec19

2 Locally available real smart meter data sampled at 1 sample/ 30 seconds

×104

Time (seconds)

10

5

00

5

Days

1000

2000

0

3000

10

P
ow

er
 c

on
su

m
pt

io
n

 (
vo

lt-
am

pe
re

s)

Daily consumption of a household for 7 days

Number of samples
0 1000 2000 3000 4000 5000

P
ow

er
 c

on
su

m
pt

io
n

 (
vo

lt-
am

pe
re

s)
  

0

500

1000

1500

2000

2500

3000

3500

Histogram of power consumption

From the histogram plot GM model for smart meter data characterization

19J. Kolter and M.Johnson, “Redd: A public dataset for energy disaggregation and research”, in Proc.Workshop Data Min. Appl. Sustain.,
San Diego, CA, USA, 2011, pp. 1–6.Energy Harvesting and RF Energy Transfer aided
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Model Parameter Selection
For load profile having N data points {x = x1, x2, . . . , xN}, GMM
consisting of k-components expressed as:

fk(x) =
k∑
j=1

wjN (x|µj , σj),with wj ≥ 0 and
k∑
j=1

wj = 1

For different k, optimal µj , σj , wj determined by maximizing
log-likelihood function using Expectation-Maximization (EM) algorithm

Hellinger’s distance20 metric used as measure of goodness of fit

For discrete probability distributions P = {p1, p2, · · · , pn} and Q =
{q1, q2, · · · , qn}, Hellinger’s distance between them is defined as:

H(P,Q) = 1√
2

√√√√ n∑
i=1

(√pi −
√
qi)2

20A. L. Gibbs and F. E. Su, “On choosing and bounding probability metrics”, Intl. Statistical Rev., vol. 70, no. 3, pp. 419–435, 2002.Energy Harvesting and RF Energy Transfer aided
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Model Fitness

Number of components of GM model,  k
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Acceptable threshold of Hellinger’s distance between two pdfs is 0.0521

Beyond k = 4, Hellinger’s distance falls below threshold
Computation complexity of k-GM model increases as O(kn2)

21L. Pardo, Statistical Inference Based on Divergence Measures. CRC Press, 2005.Energy Harvesting and RF Energy Transfer aided
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GMM Parameters

GMM parameters for k = 4 are estimated using EM algorithm and shown
in Table:

k 1 2 3 4

µj (VA) 58.053 131.50 291.20 1783.6
σj (VA) 5.2967 106.2834 8.001× 103 1.221× 105

wj 0.098 0.529 0.34 0.033
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Comparison with Existing Characterization models

CDF of 4- component Gaussian mixtures compared with the existing
data characterization models against the empirical CDF in Fig. ??.
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Model Fitness Comparison
Distribution fits Hellinger’s distance

Normal 0.0872
Exponential 0.0866

Generalized Pareto (GP) 0.0866
Gamma 0.0832

Log normal 0.0803
Generalized extreme value (GEV) 0.0784

2 GM model 0.0725
3 GM model 0.0446
4 GM model 0.0379
5 GM model 0.0373
6 GM model 0.0370

Hellinger’s distance above acceptable threshold for existing
characterization models
Hellinger’s distance fairly constant up to 3 decimal places for GM
models with k ≥ 4
Thus, daily power consumption data sampled at 1 Hz frequency by the
smart meter is reasonably characterized using 4-component GM model
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Compressive Sampling
Compressive sampling (CS) scheme for data reduction to compress high
frequency smart meter data without any loss of information

In CS22, measured value of load profile x is denoted by y:

y = Φ.x (18)

Φ: sensing matrix of size N ×N , N : number of samples in data
collection window, and y, x: vectors of size N × 1
Further, decomposing x using a sparse basis ϕ of size N ×N ,

x = ϕ.f (19)

f is a column vector of coefficients corresponding to ϕ of size N × 1
Only m (m� N ) samples are chosen for transmission, then

ŷ = Φ̂.ϕ.f = Â.f or Â = Φ̂.ϕ (20)

ŷ is m× 1 vector, f is N × 1 vector, Â and Φ̂ are m×N matrices
22E. J. Candes and M. B. Wakin, “An introduction to compressive sampling”, IEEE Signal Process. Mag., vol. 25, pp. 21–30, 2008.Energy Harvesting and RF Energy Transfer aided
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Conditions for Accurate Reconstruction

Accurate reconstruction of Fourier/DCT coefficients f from
undersampled system is challenging due to need of solving an
underdetermined linear system of equations

Compressive sampling enables exact reconstruction of f from ŷ, if the
signal is s-sparse in some basis using l1 minimization formulation23

Sensing matrix Φ and basis matrix ϕ should be incoherent for smaller
value of m/N24

Restricted Isometry Property (RIP)25 should be satisfied between sensing
matrix Φ and basis matrix ϕ for lower reconstruction error

23E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles exact signal reconstruction from highly incomplete frequency
information”, IEEE Trans. Inf. Theory, vol. 52, pp. 489–509, 2006.

24E. J. Candes and Romberg, “Sparsity and incoherence in compressive sampling”, Inverse Problems, vol. 23, no. 3, pp. 969–985, 2007.
25E. J. Candes and T. Tao, “Decoding by linear programming”, IEEE Trans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215, 2005.Energy Harvesting and RF Energy Transfer aided
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Proposed Adaptive Compressive Sampling Algorithm

Smart

meter

n samples Estimate DFT

coefficients

Estimate

sparsity

Downsize

data window

Transmit

Adaptive compressive sampling

Receive at

data collector

Subspace

pursuit

Signal reconstruction

Output

Choice of Parameters:
I Sensing matrix Φ: Random normal matrix with mean 1/m and variance of

size (m,N)
N = number of samples in the data window
m = number of samples transmitted to data collector

I Sparse basis matrix ϕ: Discrete Fourier transform

Sparsity NOT assumed to be known apriori

Sparsity decided for every data window by estimating the number of
DFT coefficients containing 99.99% energy

Number of samples to be transmitted m out of N, m = s log(N)26

26A. Unterweger and D. Engel, “Resumable load data compression in smart grids”, IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 919–929,
2015.Energy Harvesting and RF Energy Transfer aided
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Optimum Data Collection Interval Estimation
Bandwidth saving: (N−m)

N

⇑ data collection window size N
⇒
⇓ RMSE , ⇓ Bandwidth saving

Trade off between data
reconstruction accuracy and
bandwidth requirement

RMSE saturates beyond N = 600
samples, while bandwidth saving
keeps deteriorating

Optimum data collection interval
Nopt = 600 samples or 10 mins;
bandwidth saving: 39.9%

Number of samples in data window,  n
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Optimum  n = 600
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RMSE = 0.0065

Bandwidth saving = 39.9%

Thus, by applying adaptive compressed sampling technique and
updating data at the collector every 10 minutes, about 40% reduction in
bandwidth requirement can be achieved.
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Reconstruction Performance of Compressed Sampling

Number of samples ×104
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0.0065
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samples and reconstructed samples could be large
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Characterization of Reconstructed Data using 4-GM model

Hellinger’s distance between
empirical and reconstructed smart
meter data = 0.0398

Parameter estimates of 4-GM
model for the reconstructed smart
meter data in Table below Apparent power (VA)
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4-GM model parameter estimates for reconstructed smart meter data
k 1 2 3 4

µ̂j (VA) 58 131.9 297.3 1782.9
σ̂j (VA) 5.5633 106.4793 8.081× 103 1.221× 105

ŵj 0.0991 0.5421 0.3257 0.0331

GM parameters in modeled original data versus that after reconstruction:
⇒ structural features of data before compression are restored after data
reconstruction at data collector

Thus, bandwidth saving is achieved with minimal information loss in
data compression process
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Compression Performance Comparison with27

Sampling rate: 1 sample/sec

Resumable load data
compression (RLDC) [Candes and Tao,

“Decoding by linear programming,” IEEE Trans. Inf.

Theory, vol. 51, no. 12, 2005] is lossless

Adaptive compressive
sampling: ⇑ interval size,
bandwidth saving ⇓
At Nopt= 10 minutes,
improvement in bandwidth
saving over RLDC = 23.7%

Data collection interval (minutes)
1 5 10 15 30 60

B
an

dw
id

th
 s

av
in

g 
(%

)

0

10

20

30

40

50

60
Adaptive compressive sampling
Resumable data compression

Adaptive compressive sampling vs
RLDC at different data collection

intervals, 1 sample/sec.

27W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing: Closing the gap between performance and complexity”, IEEE
Trans. Inf. Theory, vol. 55, no. 5, pp. 2230–2249, 2009.Energy Harvesting and RF Energy Transfer aided
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Effect of Increasing Sampling Interval

Dataset Adaptive compressive
sampling

Resumable data
compression

RMSE Bandwidth saving Bandwidth saving

1 0.0277 22.63% -3.35%
2 0.0574 5.75% -5.35%
3 0.0598 27.79% 0.8%
4 0.0683 16.58% -4.17%
5 0.0611 16.88% -9.8%
6 0.0437 27.58% 4.92%

Sampling rate: 1 sample/30 sec
I Lesser correlation⇒ larger consecutive value difference
I As compared to 1 second, mean reduction in bandwidth savings: 20.37%

and 33.26%, respectively, for adaptive compressive sampling and RLDC.
I With 30 second sampling interval, improvement in bandwidth saving over

RLDC = 22.4% at the cost of increased RMSE
Thus, adaptive compressive sampling technique outperforms RLDC in
bandwidth saving both at 1 second and 30 seconds sampling interval.
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Effect of Channel Noise

Number of samples
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With 1% corrupted samples in a transmission window:
Adaptive compressive sampling⇒ data is recoverable

Adaptive compressive sampling⇒ acceptable for at SNR, ∼ −10 dB
RLDC⇒ acceptable for SNR = 30 dB and above

Thus, adaptive compressive sampling technique is more robust
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Modified Smart Metering Architecture

Energy Harvesting and RF Energy Transfer aided
Sustainable IoT Networks Swades De (IIT Delhi) 67/75



Implementation on Real Systems

Figure 1: Smart meters installed at IITD Figure 2: Air quality monitoring

Figure 3: Web interface of cloud storage

Summary:

Energy, storage and
bandwidth efficiency
Node-computing in
capable devices
Edge-computing for res.
constrained nodes
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Summary on Data-driven Smart IoT

High frequency smart meter data characterized using gaussian mixture
model with 4 components, which is used in evaluating the quality of data
reduction at the smart meter.

Compressive sampling based scheme devised for adaptive data reduction
at the smart meter

Optimum data collection interval estimated empirically to be 10 minutes

While collecting and processing smart meter data at 10 minutes interval,
around 40% reduction in bandwidth requirement is achieved at
individual smart meter level

Compared to existing competitive approach in [20], adaptive
compressive sampling scheme demonstrates robustness in reconstruction
with acceptable accuracy and around 23.4% and 22.4% more bandwidth
saving on smart meter data sampled respectively at 1 second and 30
seconds intervals
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Networked Sensing
- Requirement: durable/sustainable Wireless Sensor Networks
- Limitation: Battery constrained sensor nodes (SNs)
- Solution: Intelligent sensing (sense using a few SNs, estimate entire field)
- Sensor selection strategies:
∗ Centralized scheme28,29: Sensing decision taken at fusion center
∗ Decentralized scheme30: Sensing decision taken at node level
∗Multi-sensing of parameters in heterogeneous WSNs

Idea
Efficient sensor selection = f(process dynamics, sensing quality,

dynamic energy resource of SN)

- Applications: Smart environment, smart agriculture, pollution monitoring, source
localization, battlefield surveillance, landslides detection

28W. Chen and I. J. Wassell, “Optimized node selection for compressive sleeping wireless sensor networks”, IEEE Trans. Veh. Technol.,
2016.

29G. Quer, R. Masiero, G. Pillonetto, M. Rossi, and M. Zorzi, “Sensing, compression, and recovery for WSNs: Sparse signal modeling and
monitoring framework”, IEEE Trans. Wireless Commun., 2016.

30S. Hwang, R. Ran, J. Yang, and D. K. Kim, “Multivariated bayesian compressive sensing in wireless sensor networks”, IEEE Trans.
Sensors J., 2015.Energy Harvesting and RF Energy Transfer aided
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Centralized Sensor Selection

Densely deployed WSN

Research Gap
-Constant sparsity assumption for a process
-Energy-inefficient adaptation
-Same resource cost of SNs

-System model during kth measurement cycle,

ỹ(k) = A(k)z(k) + n(k). (21)

Proposed Centralized Framework10

-Multi-objective optimization: trade-off b/w
sensing quality and energy efficiency

-Verified framework on synthetic and real data sets of WSN
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Figure 4: Comparison of the proposed framework with the Quer’s framework31.

31V. Gupta and S. De, “Sbl-based adaptive sensing framework for WSN-assisted IoT applications”, IEEE IoT J., 2018.Energy Harvesting and RF Energy Transfer aided
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Decentralized Sensor Selection

Decentralized WSN system

Research Gap
-Energy consumption not accounted
-Non-adaptive to process dynamics

-Regional system model during kth cycle,

y(k)
r = A(k)

r z(k)
r + n(k)

r , 1 ≤ r ≤ R. (22)

Proposed Decentralized Framework11

-Quality-efficiency trade-off
-Accounts energy consumption in each step
-Retraining logic (limit error accumulation)

(a) N/w lifetime (b) Node lifetime (c) Sensing quality

Comparison of the proposed framework with Hwang’s approach
Energy Harvesting and RF Energy Transfer aided
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Multi-Sensing

Heterogeneous
EH-WSN (N nodes, P sensors,

slow proc.)

Research Gap
-Dedicated nodes for sensing each parameter
-Hierarchical models for dependent parameters
-No focus on sensor selection & estimation

-System model during kth measurement cycle,

ỹpk = Ap
kz
p
k + npk, ∀1 ≤ p ≤ P. (23)

Proposed Multi-sensing Framework12

-Sensing quality - energy efficiency tradeoff
-Predicts active sensors for next cycle

Measurement cycles
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Comparison of the proposed framework with Chen’s32 and exhaustive multi-sensing
32V. Gupta and S. De, “Adaptive multi-sensing in EH-WSN for smart environment”,, 2019.Energy Harvesting and RF Energy Transfer aided
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Summary on Cross-layer Optimization
Presented the case studies on channel aware link-layer protocols

Significant energy efficiency can be achieved through simple extension
of PHY-layer information exchange

Further significant improvement of energy efficiency is achievable
through more fundamental information exchange

The proposed techniques are general, i.e., they are agnostic to the
channel envelop distribution

In typical IoT networks, non-stationarity of data is frequently
encountered

In general, stochastic models fail to adapt to the changing dynamics of
the real world processes

Data-driven approaches capable of continuous updation of underlying
model address this issue

With evolving edge analytics, availability of sufficient hardware
configurations facilitates implementation of data-driven algorithms
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Queries

IITD-CNRG Website:
http://cnrg.iitd.ac.in/

Contact: swadesd@ee.iitd.ac.in

Thanks!
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