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Presentation Outline

@ Background and Motivation

© [: Cross-layer Protocol Optimizations
@ II: Data-driven Smart IoT

@ 11I: Networked Sensing

© 1V: Energy Sustainability and RFET
@ V: UAV-aided RFET

@ Concluding Remarks
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My Current Research Directions

Resource—efficienct Source/ Applications
communication protocols End—to—end transport

Network routing. forwarding
Node—to—node link control

Medium access control

Physical channel and transceiver

Broadband QoS support
(tyé)ically delay—constraine

and multiple traffic classes)

> Broadcast QoE support over HetNets

> Channel-aware unicast video streaming
> QoS/QoE aware DSA and WSA

> Mesh routing in CDNs

Efficient M2M communications
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Background and Motivation

@ Explosive growth in high throughput applications. Global Internet traffic
estimated to increase more than five times between 2018 and 2024!

Network Cost (Energy Consumption by
Existing Technologies)

Traffic Volume

Energy Consumption
by Green Technologies

2010 2020
Coverage |  Capacity Energy Efficiency  Time (Year)
v

Traffic Volume or Energy Consumption

@ This leads to proportionate increase in energy consumption of wireless networks

@ Hence “energy-efficient green communication” is gaining popularity in industry
as well as academics?

1“The power of 5G,” Ericsson Mobility Report, Nov., 2018.

2 Available: http://www.chaire-ueh.cominlabs.veb.eu/ .
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Background and Motivation (contd.)

@ IoT devices are expected to increase at a compound annual growth rate
of 7% by 20223 => energy sustainability is of keen interest

7% CAGR
2017-2022
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Devices  ©
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o0
2017 2018 2019 2020 2021 2022
= Smartphones (42%, 44%) = M2M (11%, 31 %)
= Phablets (8%, 10%) = Nonsmartphones (34%, 10%)
= Tablets (2%, 3%) = PCs (2%, 1%)

= Other Portable Devices (0.1%, 0.0%)

o Limited battery capacity of IoT devices is a major bottleneck

@ Mechanisms to ensure the perpetual operation of growing number of
devices is of very high importance

3Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016-2021. Cis¢o White Paper; 2017. E ¢
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Network Performance Measures

@ Problems encountered in computer communication networks
Congestion/delay

Blocked calls and dropped calls

Poor QoS/QoE

Concerns of resource efficiency

v

v vyy

@ These affect customer satisfaction and market revenue
o Need for network planning: e.g., routing, switching, multiplexing
@ Need for resource management: e.g., frequency reuse, energy usage

o Performance evaluation: Modeling and analysis

» Freedom of adjusting parameters during network planning and execution

» Helps in finding the performance bottlenecks
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Performance Evaluation Techniques

Three main evaluation techniques
o Measurement
@ System simulation
@ Mathematical or analytical modeling

Comparison of three techniques

Technique Requirements Merits Demerits
1. Expensive and time
. consuming
Instrumentation and .
Measurement . Most accurate 2. Non-repetitive measurements
experimental hardware . .
3. Not compatible with future
designs
1. High control over parameters
. . 1. Simulator and workload 1. Less accuracy
Simulation . . . .
2. Programming skills 2. Compatible with future system 2. Large effort
designs with some extra effort
1. Least effort
. 2. High control over parameters
. 1. Systems level understanding ' Ver p 1. Least accurate
Analysis and workload L .
2. Unrealistic assumptions

2. Mathematical skills 3. Smooth compatibility to

future system designs
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Stochastic Process

Definition: A stochastic process S is a family of random variables X (¢), each

defined on some sample space {2 and function of time ¢ defined on parameter
space T'.

o In simple terms, a set of random variables which are function of time

o T, normally considered as time can be either discrete or continuous:
Discrete or continuous time process

» every month: discrete
» real time: continuous

o () denoting set of values X (t) can take, can be discrete or continuous:
Discrete or continuous state process

» number of active tasks: discrete
» time delay in communication network: continuous

Sustainable IoT Networks
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Classification

Relationship among some interesting stochastic processes®

SMP
py;  arbitrary
fr arbitrary RW
MP = g .
p. arbitrary Pii™ i
3] arbitrary
f. memoryless f
¥ BD
RP
pli=0(ori;—r|>l g, =1
f, memoryless f, arbitrary

SMP: Semi-Markov Process; i,j: States;

MP: Markov Process; pij: Transition probability from state i to j;
BD: Birth-Death Process; f.-: Distribution of time between transitions;
RW: Random Walk; q: Random Walk;

RP: Random Process A: Birth/arrival rate

p: Death/service rate

4L. Kleinrock. Queueing Systems, volume I: Theory. Wiley Interscience, 1975.
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Limitation of Classical Stochastic Analysis

Shortcomings of Stochastic Analysis:

@ Stationarity of the process is assumed, which may not be true to real
world applications

@ Mathematical model thus obtained is only an approximate representation
of the process

Data-driven Optimization Studies:

@ Adaptive to the dynamics of real world systems

@ Robust, but can be computationally intensive
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Motivations to Cross-Layer Protocol Optimization Studies
@ Basic network layer concepts

[ssH [surp | [ssh] [nes | [rTe]
e\~ -

— R\ L= ‘V\\
ICoaxial| Fiber | |Packet
cable optic radio

Coaxial Fiber 802.11
O(ma) overhead cable optic LAN

toadd a apps and m media O(1) overhead to add app/media
Network layering motivation

» Pros and cons of layer-based approach
o Miniaturization and personalization of mobile wireless devices
@ Green communication systems

» Need for network planning: e.g., routing, switching, multiplexing

» Need for resource management: e.g., frequency reuse, energy usage
@ Cross-layered study objectives and concepts

» Pros and cons of cross-layered approach
@ Need for system-level performance modeling and analysis
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Cross-Layer Interactions and Examples
@ Functionalities of a protocol layer are influenced by the other layers
@ Accounting such dependencies make the protocol design more
responsive to the system’s needs as a whole

Cross-layering examples
@ Physical layer aware media access control, e.g., in UWSN

@ Physical layer aware link layer error control, e.g., stop-and-wait protocol
@ Physical channel and device limitations aware source coding adaptation
@ Energy efficiency and energy harvesting toward green communications
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Link-level Objectives and Current Practices

@ Node-level error and flow control

» Error-prone wireless channel: use error control schemes (AMC, ARQ,
FEC)

» Time-varying channel: ARQ vs. FEC (error bursts, return channel, delay)

» Limited energy of of portable devices: energy efficiency of interest

Classical ARQ schemes: SW, GBN, SR
PHY solutions: MCS (e.g., --QAM, Hamming codes, RS codes)

Hybrid ARQ: FEC+limited ARQ
“Channel-aware” link-layer transmission solutions

» Probing-based [Zorzi and Rao (IEEE Trans. Comp. "97)]
» Probabilistic automata [Sampath et al. (Intl. J. WCMC, 2007)]

@ Window flow control (Transport layer)

o Seek and utilize the channel information to adapt suitably

» Need to appropriately filter out the required channel information
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Markov Modeling of Wireless Channel

@ Packet error follow a first-order Markov model with transition matrix:’

N pll(i) p12(i) n _ P11 P12
M{(i) = [ p21(2)  p22(i) :| and M(1) = |: P21 D22 ]

p11 = 1 — p12 (p21 = 1 — pa2) probability of successful (unsuccessful) transmissions
@ Marginal probability of packet error e = 1 — — L2

@ Average probability of block error e = P [1] = E [Py (v)] = / Py (a)fo(a)da
0

where f,(a) is pdf of fading envelope
@ Probability that two successive blocks are in error is:

P(1,1] = E [Pu (1) Pu(v2)] = / / Po(01) Pa(02) forvs (a1, a2)dar daz

_ _,_ Py _ ., P
and po1=1-P[l1]]=1— P =1- 6

@ For 2nd order SC diversity, conditional probability of unsuccessful reception:
Py(x) =1— P[A(z)] with z = max {v(l), v(2>}
where F,(a) = P [1)(1) < a] =P [0(2) < a]

SM. Zorzi, R. R. Rao, and L. B. Milstein, “ARQ error control for fading mobile radio channels”, /EEE Trans. Veh. Technol., vol. 46, no. 2,

pp. 445-455,1997.
Swades De (IIT Delhi) 14/75
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Markov Modeling of Wireless Channel — II
© Fila) = [ (@) ande = B[Pu(a)) = [ Pu(a)2P(a)f,(a)da
® Frya, (a1, 02) = [Fyu, (a1, a2)]
Py [1,1] = E [Py(1) Py (22)] / / Py(a2) fry, (a1, a2) dardas

0, v? > Py
° 1Py (v) = {1 v < P,

g€ = Fv(\/FO)v P[l, 1] = FU1U2 (\/}70’ \/FO) and €d) = 62
P(d) [1 1 v1v2 (\/F(h \/Fo> and E(d) = E

2
Py [1,1] [ v1vs (\/ Py, \/Po)} s e = (Pay[1,1)7, porgay = 1—(1 — p21)”
@ For Rayleigh fading, the pdf of envelope is: f,(a) = 2ae~""

a(a%Jrag)
@ Joint pdf is fy, v, (a1,a2) = L‘:}e_ 2-0%) ] <M> with p = Jo(27fpT)

, then

1
@c=1—e, py —Q(e’p@OQgpe % where § = ,/—12_13;32.
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Stop-and-Wait ARQ Protocols®

@ Performance measures:
Ry, > Data throughput R: Successful frames/s:

E {number of data frames successful in time ¢
R = lim¢_yoo { }

> Energy efficiency £: Energy consumptlon per
successful data frame, including tx and rx energy per
data frame e4 and per ACK/NAK frame e, per slot
idling energy e,, and total energy e,, per probing frame.

_ [p21+(1—p21—p12)"p12] _ p2i[1-(1—p21—p12)™]
e pll(m) - P21+p12 v P21 (m) - p21+p12

Duration from an unsuccessful frame to the end of its successful transmission.

o E{K} =372, k- Pr[K = ] = 22lmran)
@ Throughput of basic SW: Ry = m

@ Energy consumed per successful data frame in basic SW:
Esw = E{K} [eq + €qa + (m — 1)ey,]

6s. De, A. Sharma, R. Jantti, and D. H. Cavdar, “Channel adaptive stop-and-wait automatic repeat request protocols for short-range
wireless links”, /L7 Commun.. vol. 6, no. 14, pp. 2124-2137,2012.
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Channel Oblivious Probing (COP) Scheme based SW

@ Once a NAK is received, transmitter enters probing mode, with a
periodicity independent of fading margin
@ Probing frames are continued until a probing ACK is received

e Average number F{P} in a set of contiguous probing is:

_ 1
E{P} = p21(tp)

Length of a cycle in COP based SW is defined as the duration between two
probing phases, which gives a single probing ACK.

o B{K} = traim

p12(m)
@ Data throughput in COP based SW:
R _ E{K}—1
COP = (E{KI-1\)msts+1p+E{P}tps+2Tp
@ Average energy consumed per successful data frame is approximately:
I _ E{K}(eatea) +(E{K}—1)(m—1)ew+E{P}(ep+tpew)
COoP = E{K}—1

Sustainable IoT Networks Swades De (IIT Delhi) 17175



Channel Aware Probing and Channel Aware SW

, tz ,
: // Threshold level

t

@ Average waiting in CAP3: F{w,} = E{WM1 ¢ E{W(Q)}%
) E{W(w)} = ZZL:Z)I Wi(m) Pijnak T = 1,2; E{P} = %
B{K}-1

e R =
cars [(E{K}fl)ms+s+Tp} +[Eleet] s por,

B{K}(catea)+(B{K} 1) (m—1)ew+ B{P}e,+ [ 2221 e,
o (C/‘CAP3 = E{K}—l

A CASW cycle is the duration between the ends of two consecutive lost data frames. l

o E{J . _ p21(7)
® Reasw = (E{J}msisiTﬁ«Hrs’ E{J} - glg(m)

© Ecasw = gy (BT} +1)(ea + eq) + E{T}(m — ey + mey)]
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Effect of Mobility and Energy Saving-Throughput Tradeoff

Besosw  2428%
- Isic ool
§ o COP (1=1) e
J i 8 4
o Effect of mOblhty 83300 s Basic SW
3 S 38
on Throughput B 520 3 e
8 7 s
S 3100, §36 4
and Energy z L% stochastc CASW3a 8 \‘fww
8 2 30001%1 dagyy o0 e cop(t=20)] 234
© 140 . ¥ @
COIlSUmpthl'l § 29000 fagie R oteetiiid %\”,‘ 2 s
5] e 5
performance g 2or & g
5 CAP1 ERE
é 2700 §
2 2600] 3 =
12 CASW1
w00 W% o a0 @ 4w
Velocity (kmph) Velocity (kmph)
Energy saving (E-gain) and throughput trade-off
(R-loss) in CASW1 and CAP3a protocols over basic SW protocol at
different fading margins (FM), fp = 50 Hz
@ Performance FM, dB CASW1 CAP3a
1mprovement Egain,%  Rloss,%  Egain,%  Rloss, %
provided by 4 299 215 29.4 23
6 19.9 13.0 19.4 1.4
proposed schemes 8 13.0 8.0 123 1.0
: 10 8.2 52 T 0.8
over basic SW 1 i 34 07 06

protocol
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ARQ-based switched antenna diversity in

p1 P3 q1 g3
T = T, =
Ra <p4 pz)’ R (q4 qz)
_ _1-p1 _ _1-q
@ PERy = 5 p1-73 and PERp = T ——
@ pP=
P191  P193  P3G1 P393 0 0
P194 P192  P3d94  P34q2 0 0
0 0 0 0 P4aq1  P24q1
0 0 0 0 p4aq4  P294
0 0 0 0 P191  P34q1
0 0 0 0 P4q1  P24q1
P194  P192  P394  P3q2 0 0
P4qa P4aq2  P294  P242 0 0
@ Throughput of the SSC-ARQ combined scheme:
NSSC—ARQ = T1 + M2 + 5 + Te
@ For symmetrical channels (p1 = g1, p2 = q2),
NSSC—ARQ—sym =
(A=p2)%+(1—p1)(1—p2)(p1+p2)
(2—p1—p2 ] .
@ Throughput of ARQ system with only one receive
. _ (1 _ _ —p2
antenna: NARQ = (1 PER) G ——
@ Throughput gain: Gain = nssc—ARQ — NARQ

p49q3
p4aq2
p193
Paqs

Markov channels’

03 04 07 08 09

05 06
Packet error rate (PER)

7s. Chakraborty, R. Roy, and S. De, “ARQ-based switched antenna diversity in markov channels”, /ET Electron. Lett., vol. 44, no. 25,

pp. 1475-1476, 2008.
Sustainable IoT Netw
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Exploiting Short-term Channel State

Link layer communication between a node pair in mobile environment

System considered is slotted, slot duration= T}, seconds

Assumptions:

» Frames always present at Tx

» Channel invariant in a frame duration Y ;; may vary from frame to frame®

Depending on received signal quality, Rx sends ACK/NAK

In case of NAK, Rx also sends the useful information, such as signal
strength information (SSI) and Doppler frequency fp°

8Q. Liu, S. Zhou, and G. Giannakis, “Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links”,
IEEE Trans. Wireless Commun., vol. 3, no. 5, pp. 1746-1755, 2004.

Sc. Tepedelenlioglu, A. Abdi, G. B. Giannakis, and M. Kaveh, “Cross-layer combining of adaptive modulation and coding with truncated
ARQ over wireless links”, Wireless Commun. Mobile Comput., vol. 1. no. 2. pp. 221-242.2001.
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Time Derivative of Fading Envelope

@ For transmission power P at Tx and & being instantaneous channel gain,
signal strength indicator (SSI) at Rx is X = v/P|h|

@ Since X is just |h| multiplied by constant VP, X provides the same
information as h

o Weuse X 2 %X in our proposed channel-aware protocols

o fy(d)is always N (0, o) irrespective of channel fading distribution!®
Only o changes depending on fading distribution

Approach using X is general, independent of fading distributions

10g, Cotton, “Second-Order Statistics of x-p Shadowed Fading Channels,” IEEE Trans. Veh. Technol.,vol. 65, no. 10, pp:8715-8720,2016.
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Probability of SSI Staying Below A Threshold

@ Let SSI from Rx at time ¢ is X = X, (< Xy)

e From X,, estimate N, (number of slots that X will continue to remain
below Xy,)

@ Probability that X will not reach Xy, in the next time slot:
Pr{X(t+T,) < X} = Pr{X(t) + X - T, < Xun}
:Pr{X0+X1 < Xth} (D)

X; = X - T, is a RV denoting temporal variation of X in one slot, where
X is a Gaussian RV
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SSI Staying Below A Threshold in Next 1 Slot

o As X, + X1 is SSL, X (t + T;,) € [0, 0), i.e., X; € [—Xj, 00)

@ Xj is a truncated Gaussian RV:

_%
1 202
e i x> -Xp
fx,(01) = Vamos [1-a: (=30 )] 2)
0 elsewhere
P ,
t
d = / e~ 2dt
(p) J =
Xen—Xo
@ Hence we obtain (1) as Pr{Xo+ X; < Xy} = / fx, (a)da

—00

Swades De (IIT Delhi)
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Probability of SSI Staying < A Threshold in Next IV, Slots
@ Similarly, probability that X will not reach Xy, in next IV, slots:
PI'{XO-I-Xl < Xth7" .,XO-I-XNg < Xth}
Xin—Xo  Xen—Xo
_ / . / fx(@, 5, —Xo)dz (3)
—o00 —o00

fx(z,%, —X,) is a truncated N,-variate Gaussian distribution !!

e_%mTZ_lm N
fx(@,3, —Xo) = — ;o T E RZQ_XO 4)
/ e 2@ BT gy
—X,
N, times
X = (X1, Xn,)T, =X, = —XOmT, > = E[XXT],
Rgixo = {:1: eRNy i g > —Xo}, and / is an IN4-dimensional integral
-x,

Hw. c. Horrace, “Some results on the multivariate truncated normal distribution,” Journal of Multivariate Analysis, vol. 94, no. 1, pp.
209-221, 2005.
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Dynamic Stop-and-Wait Protocol (D-SW)!?

o Tx sends data frames every [ slot (5 > 1) when Xy > Xy, and regularly
receives ACK for each data frame

@ Based on SSI obtained from a NAK when Xy < Xy, Tx waits for an
interval of Ty (= Ny - T},) slots before next transmission

@ N estimation is based on fp and SSI received over NAK
@ No periodicity associated with estimated N

o D-SW directly resumes data transmission after waiting for N slots

fp always does not imply a mobile scenario. It also portrays scenarios with
static Tx-Rx but mobile scatterers in between them.

12p Mukherjee, D. Mishra, and S. De “Exploiting Temporal Correlation in Wireless Channel for Energy-Efficient Communication,” JEEE
TGCN, Dec. 2017.
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Optimal NV, Estimation

@ For given acceptable error €, maximum possible value of N, is estimated

@ (P1) is solved to obtain N, for given set of system parameters (fp and
T,), Xo, Xy, and €:

(P1) m%[xigl%ze Ny Q)
g =

subjectto  Pr{X,+ X1 < Xyp,..., Xo+ Xn, < Xpp} >1—€

o Pr{X,+ X < Xy,...,Xo+ Xn, < Xy} is calculated using (3)

@ X, like X is also a zero mean truncated Gaussian RV with variance
o? =io?

o To solve (5), we define lower bound N, éb and upper bound N, ;‘b fora
given set of system parameters
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N, éb Calculation
@ Assuming complete independence among all X;, we get

N
Pr{X,+ X1 < Xpp,..., Xo+ Xy < Xpn} = [[Pri{Xo+ Xi < Xy}

i=1
(6)
Accordingly we obtain N, éb as
P2) imize N, 7
(P2) m%[);lrznbze 4 @)
Ny @, (Xth*Xo)
subject to H 7 >1—¢

=11 — P (—%)
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N ;‘b Calculation

@ Assuming that X crosses Xy in Nyth slot irrespective of whether it had
crossed Xy, before or not, IV, ;‘b is calculated by solving:

(P3) m%;;i;n%ze Ny ®)

P, (XthXO)

O'Ng
— L >1—c
1—® (%)

Ng

o N, gl,b and N, ;b allow us to reformulate (5) into an optimization problem
with an unimodal objective function

subject to

Sustainable IoT Networks Swades De (IIT Delhi) 29775



N g* Calculation

e Given N, éb and N, ;‘b, (5) is reformulated as
P4):

N, = argmin [Pr{X,+ X1 < Xy, ..., Xo+ Xn, < Xpn} — (1 —¢
NP <NGg<Nub
)

o Utilizing unimodal nature of objective function, we propose an algorithm
based on Golden Section based line search method!? to estimate N, ;

Theorem 1
Ng reduces to average fade duration (AFD) with € = 0.5 J

13A.D. Belegundu and T. R. Chandrupatla, Optimization Concepts and Applications in Engineering. Cambridge University Press,;22011¢
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Effect of System Parameters on N,

200

N,
-o- N
-a-Nz"

N, (slots)
0
=
E

0 *

0
0 10

50 o -100 0 10 20 30 40 50 60
Velocity (kmph)

0 3 .
Velocity (kmph)

Effect of node velocity and Xo on N, Variation of N;‘b, Ny, and Néb with velocity

e For same Xy, IV acquires large value for lower node velocity and
vice-versa; for T}, = 500 usec, Xo = —100 dBm, N; = 68 slots when
v = 5 kmph compared to N = 6 slots when v = 60 kmph

@ Lower bound NV, éb is relatively a tighter bound compared to IV, ;‘b

Swades De (IIT Delhi)
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Data Throughput of D-SW

@ Duration of ACK/NAK is assumed too small compared to Y, i.e.
T /N =0Ty, where p < 1

P11 Pi1o
Po1  Poo

@ Channel modeled as a two-state Markov process, M = [

@ [-step transition probabilities:
_5)8 —(1-5)8
p(B) = [p01+(165) Pl and po1(B) = po1[l ((51 9) ]’ where
0 = po1 +p1o
o If ( consecutive data transmissions (a R.V) occur thereafter, ( — 1 are

successful, i.e., E(¢) = N;:fo;(o,é@

© Data throughput (Dp): Average number of data frames delivered
successfully per second

Dp = ——+— frames/s (10)

Here A=E[(] ~1,B=(E[(] - )BT+ T;+3Yan, C =

P01(1)
and D =1-§
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Energy Consumption of D-SW

o Energy consumption per data frame (Ep): Energy consumption per
successfully delivered data frame
Let vy, vy /N, v; and vp denote transmit and receive energy per data
frame, transmit and receive energy per ACK/NAK frame, per slot idling
energy and per slot total energy consumption per probing frame
respectively. Then E'p is

E+ L (G+ NyH)

Ep = 0% - Joule (11)

where B = E [¢] (v +va/n) + (E[¢] = 1)(8 = V)vi, F = 305,
G =vp,and H = y;

. . D
e Energy efficiency is defined as n = &

@ 7 needs to higher for a good scheme i.e., a better scheme should provide
higher overall efficiency
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Optimal € Estimation

@ Optimal € estimation for maximizing energy efficiency
(P6)  : maximize n (12)
€
subjectto C1:0<e<¢,, C2:Ny;,>1, and

C4: g(Xo, Xin, fD, Tp, €) = Ny,

where function g(Xo, X, fp, Tp, €) gives output N for a given set of
Xo, Xth’ fD, and Tp.

€' = min {Eopta fu} ,where €51 = {fopt : g(Xm Xihy I, Ty, 6opi&) = N;
(13)
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Competitive Approaches
Prior related approaches: AP1, AP2!4, CT 1°

@ API1: proposes AFD 7(Xy;,) as the waiting interval Tp,

@ AP2: Tpy = 0.5 x [7(Xy) — 7(X;)], where X; = X, + 5tb is the
quantized SSI lying in {X,,, X,41 } if the entire {X | X < Xth} range
is sub-divided into L levels with quantization step size =&

@ CT: takes coherence time'® 7, = 0;123 as default T3, irrespective of Xj.

@ Average Fade duration is mathematically defined as

(Xp) = oo X Xon) , where f ¢ (z, %) is joint PDF of X and X
/0 foX(Xthv )di

145 De, A. Sharma, R. Jantti, and D. H. Cavdar, “Channel adaptive stop-and-wait automatic repeat request protocols for short-range
wireless links,” IET Commun., vol. 6, no. 14, pp. 2128-2137, Sep. 2012.

15y, Moon, “Channel-adaptive Random Access With Discontinuous Channel Measurements,” IEEE J. Sel. Areas Commun., vol. 34, no. 5,
pp. 1704-1712, May 2016.

lor, Rappaport, Wireless Communications: Principles and Practice. Prentice Hall PTR, 2001.
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Proposed Framework Verification

o o -Sim, v = 12 kph, =02 11
=12 kmph, e=0.2] .

3 » Bl Simulation]
& +-Au, v = 12 kuupl, e=0.1 ol
& 0015 24 kanph, =02 S
2 2 kmph, e=02|  © 9 ]
s kmph, =01 5 8§
2z 2tk 01| 0
g 001 ER
z 50 6
4 EE
g g
= $ <04
2 0.005 ’
2 <z
o
£ 02
H B

0 0

0 60 50 40 30 20 -0 0 locity=12 kmph locity=24 kmph

X, (dBm)

@ X plays a key role in T3, estimation

@ For a particular X, T}, decreases with increasing v; reason being
decrease in correlation

o Unlike other approaches, average no. of NAK frames per cycle is close
to 1 for D-SW
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Energy Efficiency

o

=

53
T

N N N N o N
" <

2.359 —*-velocity= 5 kmph
-a-velocity= 10 kmph
—-velocity = 20 kmph|

23 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Number of bits Lysx in NAK frame

Energy efficiency (frames/sec/Joule)
o
=

Effect of NAK frame size Ly ax on Energy efficiency n

o Initial increase of 1 with L 4k, leading to n satuaration beyond
Lnak 25
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Performance Comparison
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(a) Data rate; (b) Energy consumption; (c)Energy efficiency

@ D-SW results in 9% more data throughput, 4% less energy consumption,
and 12% more energy-efficient over nearest competitive approach AP2
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Remarks

o D-SW estimated the ‘waiting time’ when channel is not suitable for data
transmission, i.e., X < Xy,

e But D-SW fails to exploit channel when it is in ‘good’ state, i.e.,
X > X,

@ D-SW only estimates optimal waiting time when channel is unusable for
data transmission

@ Hence we extend our analysis to the condition when X > Xy,
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Channel-aware Dynamic Window protocol (cDIP)!’

@ cDIP: a combination of channel-aware SW and SR

@ When channel is ‘bad’ (X < Xy), cDIP waits for time Tg = NN, ; Ty
until channel becomes usable

@ When channel is ‘good’ (X > Xy;), as in SR, Tx continuously transmits
data frames for time Ty, = N, - T}, without waiting for an ACK/NAK

@ Unlike classical SR, only NAK packets are sent for incorrectly received
data packets, which are retransmitted by the Tx

17p, Mukherjee and S. De, “cDIP: Channel-aware dynamic window protocol for Energy-efficient IoT Communication ,” /[EEE Internet
Things J.. vol. 5, no. 6, pp. 4474-4485, Dec 2018.
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cDIP Algorithm

Current Channel State Xo

Good (Xo > Xri1) Bad (X < Xry)

(i) Tx communicates
estimated Tp, to Rx
(ii) Continous data transfer
for next Ty slots
N

i

Tx estimates Ty,

After Ty, slots, Tx
sends a probing signal

CK received | [NAK received
at Tx at Tx

After Ty, slot?, Rx sends Tx a
feedback packet containing CSI
and information of frames not

received correctly.

J—lﬁ

‘XOEXTH‘ ‘X0<XTH!

Garbled feedback|
received at Tx

Random Ty, is selected

(i) Tx estimates Ty, based on CST
(ii) Tx first retransmits the
lerroneous frames followed by new
data frames in these Typ slots.
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Ty estimation

e Ty, = Ny - T}, where Ny is the estimated time interval that X > X3,
when X() > Xth

@ Ny is calculated by solving:

(P7) : maximize N, (14)
subject to Ny 20

Pr{Xo+ X1 > Xy, -, Xo+Xn, > Xip} > 1—¢
@ Here also X1, -+, Xy, are truncated Gaussian R.Vs as stated earlier

@ P7is reformulated like P1 to obtain N

TO SUMMARIZE:

@ Pl estimated time N for which Tx can be put to sleep when the channel
is unusable.

@ P7 estimated time N, for which Tx can continuously transmit data
without waiting for any ACK/NAK when the channel is suitable for
communication
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Data throughput of cDIP

@ Data throughput: Long-term average of successfully delivered data
frames per second.

(lge)m
Dr=—— frames/sec (15)
(Np + Ng)Tp + 3T,

> ( :interval between two consecutive data frame transmission attempts
> Ny and Ny : long-term averages of N and N respectively, i.e.,
1 1 &
Ny = lim Z:l Ny (i) and Ny = lim Z:INQ (i)
» 3T, : time period due to probing based three way handshake between Rx
and Tx
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Energy consumption of cDIP

@ Energy consumption: Long-term average energy consumption per
successfully delivered data frame.

NF —
v+ 2V /N + Vp 4+ (N 4 Qg Vs
Bo =" me ”_( PTGV (16)
(=€) 7=
¢ b

Vf,VA/N, Vp, and v; : transmit and receive energy per data frame,
transmit and receive energy per ACK/NAK frame, probing frame, and
per slot idling energy

o Energy efficiency: n = g—g frames/sec/Joule

@ User-defined range of €: € € [¢, €,]

@ Optimization problem P8 formulated to obtain €* (optimal €):

(P8) : " = {6

argmax 77} (17)

€1<e<ey
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Verification of Ty estimation

Time to reach bad state, T, (msec)

Verification of Ty estimation via Monte Carlo simulation. X7y = —10.4576 dBm

20

o

A Sim, v = 10 kmph, € = 0.1
---Ana, v =10 kmph, e = 0.1

O Sim, v = 30 kmph, ¢ =0.1
—Ana, v = 30 kmph, € =0.1

of=

-8 -6 -
X, (dBm)

4

@ Xy > Xy is not the same as X being just more than X7

@ Rate of increase of Ty, with X increases with decreasing v
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Effect of Fading Margin
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Effect of fading margin F' on performance of cDIP

o Increasing F' implies that channel is more likely to stay in ‘good’ state
most of the time

o cDIP unlike AP1, AP2, or CT avoids regular feedbacks even when
channel is in ‘good’ state

@ This results in significant performance improvement
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Overhead Performance

9
7 x10 .

-o-v = 6 kmph
—v = 18 kmph
—4-v = 30 kmph|

Energy efficiency 7 (frames/sec/Joule)

2 4 6 8 10
Number of additional bits By,

Effect of overhead Br, on 7 of cDIP. ¢ = 0.05, and X7y = —3.9788 dBm

@ Br, in case of cDIP, just like Ly 4x of D-SW, initially leads to
energy-efficiency enhancement before saturating at some point

e Lower node mobility requires higher BJ"™', which reaffirms our
observation made in the analysis-simulation plot
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Performance Comparison
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Performance comparison: (a) Data throughput; (b) Energy consumption; (c) Energy efficiency.
Xrg = —3.9788 dBm

e Approximately 40.18% higher throughput, 9% lower energy
consumption, and 41.92% higher energy efficiency with respect to AP2
@ Nominal extra overhead

@ Gain margin increases considerably compared to D-SW
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Summary on Cross-layer Adaptive Protocols

@ Presented the research case studies on cross-layer channel aware
link-layer protocols

@ Significant energy efficiency can be achieved through simple extension
of PHY-layer information exchange

o Further significant improvement of energy efficiency is achievable
through more fundamental information exchange

o The proposed techniques are general, i.e., they are agnostic to the
channel envelop distribution
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I1: Data-driven Smart IoT Framework!8

Smart LAN Data | WAN
Meter | powerline communication, Collector telephony, broadband,
point-to-point, radio-frequency, fiber
mesh, hybrid
meter data management, Applications
billing, e« »|Control
outage management center

@ Smart meter: measure electricity consumption, transmit data to collector
@ Sampling Rate: From 1 sample/sec to 1 sample per several minutes

@ Data collector: retrieves the data, may or may not process the data

@ Control center: central data collection point, data processing

Motivation and Research Gap:

@ High resolution smart meter data essential for near real-time applications

@ Characterization of high resolution smart meter data difficult due to
spiky and fluctuating load patterns

18g, Tripathi and S. De, “An efficient data characterization and reduction scheme for smart metering infrastructure”, /EEE Trans. Ind.
Informat., vol. 14, no. 10, 2018.
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Characterization of Smart Meter data

@ Dataset used:
@ Reference Energy Disaggregation Dataset (REDD) published by
Massachusetts Institute of Technology (MIT) sampled at 1 sample/sec!”
© Locally available real smart meter data sampled at 1 sample/ 30 seconds

= N w
o o =]
=} S S
s} S S

w
3]
o
@
=%
=
<

Power consumption
(volt-amperes)
(volt

c
kel
a
£
=
]
c
<]
o
9]
=
o
o

0
«10% 0 1000 2000 3000 4000 5000

’ Number of samples
Time (seconds) ! P

Daily consumption of a household for 7 days Histogram of power consumption

@ From the histogram plot GM model for smart meter data characterization

195, Kolter and M.Johnson, “Redd: A public dataset for energy disaggregation and research”, in Proc. Workshop Data Min. Appl. Sustain.,
San Diege, CA, USA. 2011, pp. 1-6.
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Model Parameter Selection

@ For load profile having N data points {x = z1,x2,...,zy}, GMM
consisting of k-components expressed as:

k

k
) =Y wiN(x|uj,05),with w; >0 and Y w; =1
— =

e For different £, optimal (15, 0, w; determined by maximizing
log-likelihood function using Expectation-Maximization (EM) algorithm

20

o Hellinger’s distance”” metric used as measure of goodness of fit

e For discrete probability distributions P = {p;,p2, -+ ,pn} and Q =
{q1,92, - ,qn}, Hellinger’s distance between them is defined as:

H(P,Q) = i e

=1

20A. L. Gibbs and F. E. Su, “On choosing and bounding probability metrics”, /ntl. Statistical Rev.vol. 70, no. 3, pp. 419435, 2002.
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Model Fitness
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Threshold Hellinger's distance = 0.05
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0.05

0.04 ! : t
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Number of components of GM model, k

o Acceptable threshold of Hellinger’s distance between two pdfs is 0.052!
@ Beyond k£ = 4, Hellinger’s distance falls below threshold
@ Computation complexity of k-GM model increases as O(an)

20y, Pardo, Statistical Inference Based on Divergence Measures. CRC Press, 2005.
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GMM Parameters

@ GMM parameters for k = 4 are estimated using EM algorithm and shown

in Table:
k 1 2 3 4
i (VA) 58.053 131.50 291.20 1783.6
o; (VA) 52967 106.2834 8.001 x 103 1.221 x 10°
w; 0.098 0.529 0.34 0.033
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Comparison with Existing Characterization models

@ CDF of 4- component Gaussian mixtures compared with the existing
data characterization models against the empirical CDF in Fig. ??.

= = Empirical
GP

010 200 400 1

0 L L L L L L
0 500 1000 1500 2000 2500 3000 3500

Apparent power (VA)
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Model Fitness Comparison

Distribution fits Hellinger’s distance
Normal 0.0872
Exponential 0.0866
Generalized Pareto (GP) 0.0866
Gamma 0.0832
Log normal 0.0803
Generalized extreme value (GEV) 0.0784
2 GM model 0.0725
3 GM model 0.0446
4 GM model 0.0379
5 GM model 0.0373
6 GM model 0.0370

o Hellinger’s distance above acceptable threshold for existing
characterization models

o Hellinger’s distance fairly constant up to 3 decimal places for GM
models with k& > 4

@ Thus, daily power consumption data sampled at 1 Hz frequency by the
smart meter is reasonably characterized using 4-component GM model
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Compressive Sampling
@ Compressive sampling (CS) scheme for data reduction to compress high
frequency smart meter data without any loss of information
o In CS??, measured value of load profile x is denoted by y:
y=%o.x (18)

®: sensing matrix of size N x N, N: number of samples in data
collection window, and vy, z: vectors of size N x 1

o Further, decomposing x using a sparse basis ¢ of size N x N,
z=.f (19)

f is a column vector of coefficients corresponding to ¢ of size NV x 1
@ Only m (m < N) samples are chosen for transmission, then
g=bof=Af or A=y (20)

7 is m x 1 vector, f is N x 1 vector, A and ® are m x N matrices

22E. J. Candes and M. B. ‘Wakin, “An introduction to compressive sampling”, /EEE Signal Process. Mag!, vol. 25, pp. 21=30. 2008,
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Conditions for Accurate Reconstruction

@ Accurate reconstruction of Fourier/DCT coefficients f from
undersampled system is challenging due to need of solving an
underdetermined linear system of equations

o Compressive sampling enables exact reconstruction of f from ¢, if the
signal is s-sparse in some basis using /; minimization formulation??

@ Sensing matrix ¢ and basis matrix ¢ should be incoherent for smaller
value of m/N?*

o Restricted Isometry Property (RIP)~ should be satisfied between sensing
matrix ¢ and basis matrix ¢ for lower reconstruction error

)25

23E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles exact signal reconstruction from highly incomplete frequency
information”, /EEE Trans. Inf. Theory, vol. 52, pp. 489-509, 2006.

24E. J. Candes and Romberg, “Sparsity and incoherence in compressive sampling”, /nverse Problems, vol. 23, no. 3, pp. 969-985, 2007.

25E. J. Candes and T. Tao, “Decoding by linear programming”, /EEE Trans. Inf. Theory, vol. 511 no. 125pp. 4203-4215. 2005.
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Proposed Adaptive Compressive Sampling Algorithm

Adaptive compressive sampling

Smart | n samples || Estimate DFT Estimate Downsize Transmit
.. . —» . | —
meter coefficients sparsity data window

Signal reconstruction

Receive at Subspace Output
. ——
data collector pursuit

@ Choice of Parameters:
» Sensing matrix ¢: Random normal matrix with mean 1/m and variance of
size (m,N)
N = number of samples in the data window
m = number of samples transmitted to data collector
» Sparse basis matrix ¢: Discrete Fourier transform

@ Sparsity NOT assumed to be known apriori

@ Sparsity decided for every data window by estimating the number of
DFT coefficients containing 99.99% energy

o Number of samples to be transmitted m out of N, m = s log(N)?®

204, Unterweger and D. Engel, “Resumable load data compression in smart grids”, /EEE Trans. Smart Grid. vol. 6, no. 2. pp. 919-929,
2015.
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Optimum Data Collection Interval Estimation

o Bandwidth saving: %

@ 1 data collection window size N

=
J RMSE, |} Bandwidth saving

o Trade off between data
reconstruction accuracy and
bandwidth requirement

@ RMSE saturates beyond N = 600

samples, while bandwidth saving
keeps deteriorating

Bandwidth saving = 39.9%

Bandwidth saving (%)

RMSE = 0.0065

1l 0
0 500 1000 1500 2000 2500 3000 3500 4000
Number of samples in data window, n

@ Optimum data collection interval
Nopt = 600 samples or 10 mins;
bandwidth saving: 39.9%

o Thus, by applying adaptive compressed sampling technique and
updating data at the collector every 10 minutes, about 40% reduction in
bandwidth requirement can be achieved.
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Reconstruction Performance of Compressed Sampling

3500

actual
3000

— — — reconstructed

2500

Maximum recot uction
error (V.
8 8 &8 8
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S o 9
S 9 9o
S 8 oS

Apparent Power (VA)

500

Minimum recol ‘uction
error (
o ko

00 1 2 3 4 5 6 7 8 T 2 3 4 B 3
Number of samples x10% House Number
Reconstructed data for 10 minutes interval ~Maximum and minimum reconstruction
versus actual data for house 1 error for all houses

@ Reconstructed data closely follows actual data, RMSE in first Fig. =
0.0065

e Data windows with more spikes = maximum difference between actual
samples and reconstructed samples could be large
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Characterization of Reconstructed Data using 4-GM model

08 0.72 H = = = 4GM Reconstructed
. . 0.7 0.715
o Hellinger’s distance between o

empirical and reconstructed smart §os
meter data = 0.0398 0s

@ Parameter estimates of 4-GM
200 220 240
mOdel for the reconSthted Sma‘rt D0 500 1000 1500 2000 2500 3000 3500
meter data in Table below Foparentpover (49

0.705

0.7

0.695

Comparison of CDFs of empirical versus
4-GM modeled and 4-GM reconstructed
over 10 mins

Sustainable IoT Networks Swades De (IIT Delhi)



4-GM model parameter estimates for reconstructed smart meter data

k 1 2 3 4
fi; (VA) 58 131.9 297.3 1782.9
6; (VA) 5.5633 106.4793 8.081 x 10° 1.221 x 10°
W 0.0991  0.5421 0.3257 0.0331

@ GM parameters in modeled original data versus that after reconstruction:
= structural features of data before compression are restored after data
reconstruction at data collector

o Thus, bandwidth saving is achieved with minimal information loss in
data compression process
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Compression Performance Comparison with?’

Sampling rate: 1 sample/sec
@ Resumable load data
compression (RLDC) (candes and Tao,

“Decoding by linear programming,” IEEE Trans. Inf.
Theory, vol. 51, no. 12, 2005] is lossless

Bandwidth saving (%)

o Adaptive compressive
sampling: 1} interval size,

bandwidth saving | C o
@ At Nyp= 10 minutes, Adaptive compressive sampling vs

improvement in bandwidth RLDC at different data collection

saving over RLDC =23.7% intervals, 1 sample/sec.

27W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing: Closing the gap between performance and complexity”, /EEE
Trans. Inf. Theory, vol. 55, ro. 5, pp. 2230-2249, 2009.
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Effect of Increasing Sampling Interval

Adaptive compressive Resumable data
Dataset . .
sampling compression
RMSE Bandwidth saving Bandwidth saving

1 0.0277 22.63% -3.35%

2 0.0574 5.75% -5.35%

3 0.0598 27.79% 0.8%

4 0.0683 16.58% -4.17%

5 0.0611 16.88% -9.8%

6 0.0437 27.58% 4.92%

@ Sampling rate: 1 sample/30 sec
» Lesser correlation = larger consecutive value difference
> As compared to 1 second, mean reduction in bandwidth savings: 20.37%
and 33.26%, respectively, for adaptive compressive sampling and RLDC.
» With 30 second sampling interval, improvement in bandwidth saving over
RLDC =22.4% at the cost of increased RMSE

o Thus, adaptive compressive sampling technique outperforms RLDC in
bandwidth saving both at 1 second and 30 seconds sampling interval.
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Effect of Channel Noise

Adaptive compressive sampling

—+— Hellinger's distance
—6— RMSE 0.07
= = = Helingers distance threshold || o o6
* Crossover point

Apparent Power (VA)

Location o first
240 cormupted bit

Hellinger Distance

100 200 300 400 500 500
Number of samples

SNR (db)

Variation of RMSE with SNR in adaptive
compressive sampling and RLDC

Reconstruction with 1% corrupted
samples in adaptive compressive sampling

and RLDC
@ With 1% corrupted samples in a transmission window:

Adaptive compressive sampling = data is recoverable

o Adaptive compressive sampling = acceptable for at SNR, ~ —10 dB
RLDC =- acceptable for SNR = 30 dB and above

@ Thus, adaptive compressive sampling technique is more robust
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Modified Smart Metering Architecture

SRR IRt Controller
Physical Parameters (Raspberry Pi) HTTP
(Power,Current etc.) g, 0 cmmmeeeo >
--------- >
Modbus

Content type: JSON
Content Encoding: Gzip
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Wireless
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@
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TCP/IP
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Home Eectity Use
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Implementation on Real Systems

| '
FR2810 [ 4 () 2
Meter -
y Current
[ Transformer
Y
\

Figure 1: Smart meters installed at [ITD Figure 2: Air quality monitoring

CNRG Data Management System Slll]l”l(ll"\'.‘

@ Energy, storage and
bandwidth efficiency

@ Node-computing in
capable devices

@ Edge-computing for res.
constrained nodes

Figure 3: Web interface 6t cloud storage
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Summary on Data-driven Smart [oT

@ High frequency smart meter data characterized using gaussian mixture
model with 4 components, which is used in evaluating the quality of data
reduction at the smart meter.

o Compressive sampling based scheme devised for adaptive data reduction
at the smart meter

@ Optimum data collection interval estimated empirically to be 10 minutes

@ While collecting and processing smart meter data at 10 minutes interval,
around 40% reduction in bandwidth requirement is achieved at
individual smart meter level

e Compared to existing competitive approach in [20], adaptive
compressive sampling scheme demonstrates robustness in reconstruction
with acceptable accuracy and around 23.4% and 22.4% more bandwidth
saving on smart meter data sampled respectively at 1 second and 30
seconds intervals
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Networked Sensing

- Requirement: durable/sustainable Wireless Sensor Networks
- Limitation: Battery constrained sensor nodes (SNs)
- Solution: Intelligent sensing (sense using a few SN, estimate entire field)
- Sensor selection strategies:
* Centralized scheme?®®,?°: Sensing decision taken at fusion center
* Decentralized scheme’’: Sensing decision taken at node level

* Multi-sensing of parameters in heterogeneous WSNs

Efficient sensor selection = f{process dynamics, sensing quality,
dynamic energy resource of SN)

- Applications: Smart environment, smart agriculture, pollution monitoring, source
localization, battlefield surveillance, landslides detection

28W. Chen and 1. J. Wassell, “Optimized node selection for compressive sleeping wireless sensor networks”, IEEE Trans. Veh. Technol.,

2016.
2. Quer, R. Masiero, G. Pillonetto, M. Rossi, and M. Zorzi, “Sensing, compression, and recovery for WSNs: Sparse signal modeling and
monitoring framework”, /EEE Trans. Wireless Commun., 2016.

30g, Hwang, R. Ran, J. Yang, and D. K. Kim, “Multivariated bayesian compressive sensing in wireless sensor networks”, /EEE Trans.
Sensors J., 2015.
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Centralized Sensor Selection
Research Gap

Pollution source

-Verified framework on synthetic and real data sets of WSN

AR ={1,2,N} C {1,...,N}
G.9)

\

\  Intelligent central entity

20 (1) o
‘ 20 (N)
° e 0 O O O O e
n=1 2 co N
Sensor nodes
Densely deployed WSN

Networesiua energy

(a) N/w residual energy

-Constant sparsity assumption for a process
-Energy-inefficient adaptation
-Same resource cost of SNs

-System model during k" measurement cycle,

yF) = AR g(R) 4 n(k) Q21

Proposed Centralized Framework!®

-Multi-objective optimization: trade-off b/w
sensing quality and energy efficiency

——Guers ramawonc

(b) Sensing quality

il
-

(¢) No. of active SNs
sed framework with the Quer’s framework>'.

3y, Gupta and S. De, “Sbl-based adaptive sensing framework for WSN-assisted IoT applications”, /EEE 07 /.. 2018,
Swades De (IIT Delhi) 71775
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Decentralized Sensor Selection
Research Gap

-Energy consumption not accounted
-Non-adaptive to process dynamics

// ﬂ ntelligent central entity
g
|
2 |

N

source

-Regional system model during k" cycle,
y B = AWzF L0 1 <r <R (22)

Pollution

Proposed Decentralized Framework!!

Region 71 Regn 2. egion R -Quality-efficiency trade-off
Decentralized WSN system -Accounts energy consumption in each step
-Retraining logic (limit error accumulation)

(a) N/w lifetime (b) Node lifetime (c) Sensmg quahty

Netwok s nergy
e unr

Comparison of the proposed framework with Hwang’s approach
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Multi-Sensing

Research Gap

-Dedicated nodes for sensing each parameter
-Hierarchical models for dependent parameters
-No focus on sensor selection & estimation

-System model during k%" measurement cycle,

yh=Alz] +n}, V1<p<P. (23)

Proposed Multi-sensing Framework?

EH-WSN (N nodes, P sensors,

Slow proc.) -Sensing quality - energy efficiency tradeoff

-Predicts active sensors for next cycle

mg%ﬁ?%f%f ﬁ%l%}%osed frange)v%% Senﬁlnéﬁgr(l)’r 32 and (et?( Cﬁls‘ffvgglgrslo It ggfclg?ng

2y, Gupta and S. De, “Adaptive multi-sensing in EH-WSN for smart environment”,. 2019.
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Summary on Cross-layer Optimization

@ Presented the case studies on channel aware link-layer protocols
@ Significant energy efficiency can be achieved through simple extension
of PHY-layer information exchange

o Further significant improvement of energy efficiency is achievable
through more fundamental information exchange

@ The proposed techniques are general, i.e., they are agnostic to the
channel envelop distribution

o In typical IoT networks, non-stationarity of data is frequently
encountered

@ In general, stochastic models fail to adapt to the changing dynamics of
the real world processes

@ Data-driven approaches capable of continuous updation of underlying
model address this issue

@ With evolving edge analytics, availability of sufficient hardware
configurations facilitates implementation of data-driven algorithms
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Queries

HTD-CNRG Website:
http://cnrg.iitd.ac.in/
Contact: swadesd@ee.iitd.ac.1in

Thanks!
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